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Abstract

In the present study, effect of satisfying stress boundary conditions, in addition to displacement boundary conditions,
in the axisymmetric vibration analysis of circular and annular plates is investigated. A new axisymmetric finite element,
which is based on a combination of the conventional displacement-type variational principle and Reissner’s principle, is
proposed. With this formulation, stresses, like displacements, are primary variables, and both displacement and stress
boundary conditions can be easily and exactly imposed. Axisymmetric vibration frequencies of some typical circular
and annular plates are then obtained with the present approach and are compared with those by the displacement-type
axisymmetric finite element. Based on the results of the present method, it is found that the conventional finite element,
though not satisfying stress boundary conditions, can still obtain sufficiently accurate vibration frequencies of circular
and annular plates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

To analyze the axisymmetric vibration of circular and annular plates, the finite element method is a
useful and practical tool, no matter what theories it is based on. However, all the finite elements used to
analyze the vibration of circular or annular plates to this date are of displacement-type formulations, e.g.,
Pardoen (1973), Gladwell and Vijay (1975), Guruswamy and Yang (1979) and Liu and Chen (1995).
Displacement-type finite element formulations have the merit that they are simple in formulating, their
applications are easy, and obtaining the frequencies and mode shapes are straightforward. Especially when
analyzing the axisymmetric vibration of circular and annular plates with the axisymmetric finite element
(Liu and Chen, 1995), the formulation is based on 3-D elasticity without any approximation and as-
sumption, and all kinds of the displacement boundary conditions can be imposed exactly. This is not
possible for other approaches in some cases (e.g., with different simply supported boundary conditions).
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Therefore, the axisymmetric finite element becomes an attractive tool in analyzing the vibration of circular
and annular plates due to its simplicity, versatility, and accuracy (Liu and Lee, 2000). However, a question
then was raised ! if the free stress boundary conditions of the circular plates are satisfied. Mostly, the
answer is ‘no’ due to the nature or a shortcoming of displacement-type finite element formulation. But, how
large will be the effect of satisfying the stress boundary conditions, in addition to the displacement
boundary conditions, compared with satisfying only the displacement boundary conditions when analyzing
the vibration of circular and annular plates? In other words, the problem is how well the conventional
displacement-type axisymmetric finite element can be trusted in analyzing the vibration of circular and
annular plates. The present investigation represents an attempt to answer this problem. First, a new axi-
symmetric finite element formulation is proposed, which combines the conventional displacement-type
variational form and Reissner’s principle, such that the stresses as well as displacements are included as
primary variables. The stress boundary conditions can then be satisfied easily and exactly. Vibration fre-
quencies of some typical circular and annular plates are then derived with the present approach, and are
compared to those obtained by the displacement-type axisymmetric finite element formulation to show the
effect of additionally satisfying stress boundary conditions. Two more examples are also analyzed, and the
results of a 3-D Ritz method (So and Leissa, 1998), a 3-D series method (Hutchinson and El-Azhari, 1986),
a 2-D Mindlin Theory (Irie et al., 1980), the displacement-type axisymmetric finite element method (Liu
and Chen, 1995), and the present method are presented to demonstrate the differences among these ap-
proaches.

2. Formulation

The conventional displacement-type finite element formulation for axisymmetric vibration of circular
and annular plates uses the following variational form:

0= / / [(0,8¢, + 0.8¢. + 69dep + 1,:87,.) — p(idit + W) dvde (1)
t vol
where the strains can be expressed in terms of displacements # and w as
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where ©# and w are the displacements in the radial and the thickness directions, respectively, and are
functions of the radial coordinate r, thickness coordinate z, and time ¢. They are not functions of the
circumferential coordinate 0 due to axisymmetry. The circumferential displacement v and strains y,, and y,,
are all zero, and the circumferentially vibrating modes are not included in the present study.

With the above formulation, the primary variables are # and w only, stresses are the secondary variables,
and cannot be imposed as boundary conditions. To satisfy the free stress boundary conditions, the vari-
ational form (1) is augmented with Reissner’s principle (Washizu, 1975),

2 2 2 2
0= 6/ {/ (0,8, + 0.6; + 0989 + T12,.) — (S1107 + 52207 + 53307 + Se6T,, + 25120,0, + 25130,0¢
t vol

+ 25230.04) /2 — p(ir* +w*)/2]do| dt (3)

! Question raised by A.W. Leissa at the International Symposium on Vibrations of Continuous Systems, Estes Park, Colorado,
1997.
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where s;; are the compliance coefficients of the material. By combining Eqs. (1) and (3), the stresses now
become dependent variables and their conditions can be imposed on the boundary, just like the displace-
ments.

The finite element procedures are then followed, and the combined variational form will lead to an
elemental equation as follows,

[m] [0]} { {U}} { (k] [b]} { {U}}
. + =0 4
B e e @)l @
where {U}T =[u; up -~ uy; w wy --- w,| and {U}T =1[01 G2 -+ Omi0 On -+ O} Gp Opp -+
Oon; Tzl Ta ** Tra), 1 1S the number of nodes in an element, [k] is the elemental stiffness matrix as usual,
and [b] and [d] are derived matrices with the inclusion of Reissner’s variational form. [b"] is the transpose of

[b]. Both [k] and [d] are symmetric. Details of these matrices are shown in the appendix.
Assemblage of the above equations for all elements yields the system equation,

4 B} 14 )

and the corresponding eigenvalue equation is

[ By e ”
B'] D] {2} 0] [0]] {2}

where the eigenvalue A is the square of the vibration frequency . It should be noted that the above
equation cannot be solved directly due to the appearing of the zero matrices, and some matrix manipu-

lations should be conducted as follows before we can obtain the eigenvalues.
The lower part of Eq. (6) shows that

[BT]{x} + [D]{2} =0

To impose the free stress boundary conditions, the rows of [BT] and [D] corresponding to the specified
nodal free stresses are first set to zero, so are the corresponding columns of [D], and then the diagonal
entries of these rows in [D] are set to 1. We then end up with the following equation, where the specified free
stress boundary conditions are guaranteed. Also, matrices [B'] and [D] have been changed to [BT | and [D*],
respectively.

[BY X} + DU} =0 or {X}=-[DT"[B"]{x}
The above stress expression is then substituted into the upper part of Eq. (6), and we obtain
(1] = 1BIID") [B7] [ £} = 2im){x} )
Following rules of matrix multiplication, it is found that the above equation is equivalent to
[[K] = (B0 [B" ]| {x} = 2m) () (8)
with [B*] being the transpose of [BT]. This is the eigenvalue equation we use to calculate the vibration

frequencies of circular and annular plates. It is also found that the modified stiffness matrix in Eq. (8) is still
symmetric.
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3. Examples and discussion

To see the validation and accuracy of the present formulation and the difference between it and the
conventional displacement-type formulation, axisymmetric vibration of some typical circular and annular
plates with various combinations of radius-to-thickness ratios a/h, inner-to-outer radius ratios »/a (annular
plates), and boundary conditions is analyzed, and the results are presented in Tables 2-6 and compared to
those of the displacement-type finite element formulation which has been shown to be able to obtain ac-
curate frequencies up to date (Liu and Lee, 2000). Five types of boundary conditions are studied including
one clamped and four simply supported conditions. Fig. 1 shows the specified displacements and stresses on
the boundaries for the various types of boundary conditions. The vibration frequency w is nondimen-
sionalized according to @ = w(pha*/D)"* where p is density of material and D = ER*/12(1 —?), with E

z g, =1, =0(except upper corner)

z

A
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Fig. 1. Boundary conditions.
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Table 1
Typical convergence of @; of circular plates with mesh refinement
a/h 4 5 10 20 50
Clamped (4x2)8.991 (5%2)9.358 (10 x 1) 10.059
(8x2)8.935 (10 % 2)9.350 (10 x2)10.016 (20 x 1) 10.200 (50 x 1)10.225
(8x4)8.923 (10 x 4)9.338 (20 % 2)9.990 (20 x 2)10.180 (50 x 2)10.218
SS1 & SS2 (4x2)4.705 (5x1)4.796
(8x2)4.697 (5x2)4.784 (10 x 1)4.899 (20 x 1)4.926 (50x1)4.934
(8 x 4)4.694 (10 x 2)4.780 (10 x 2)4.896 (20 x 2)4.925 (50 x 2)4.934
SS3 (4x2)6.544 (5x1)6.939
(8x2)6.474 (5%2)6.794 (10x 1)7.342 (20 x 1)7.493 (50 x 1)7.569
(8 x4)6.367 (10x2)6.729 (10x2)7.232 (20 x 2)7.451 (50 x2)7.539
SS4 (4x2)4.621 (5x1)4.743
(8 x2)4.596 (5x2)4.736 (10 % 1)4.890 (20 x 1)4.924 (50 x 1)4.934
(8 x4)4.589 (10x2)4.722 (10 x2)4.888 (20 x2)4.919 (50 x2)4.934

and v being Young’s modulus and Poisson’s ratio, respectively. The finite element employed is the 2-D
eight-node isoparametric quadratic element in the 7z-plane and the finite element meshes are successively
refined by increasing the number of grids in the radial and the thickness directions alternatively. Typical
convergence with mesh refinement is demonstrated in Table 1 wherein the numbers in the parenthe-
ses denote the number of grids in the radial and the thickness directions, respectively. Convergence is
monotonic with the present formulation and is considered to be reached when the difference of frequencies
between two consecutive meshes is less than 0.5% for both the mixed and displacement-type approaches.
Convergence rates are also similar for both approaches, though different for different cases. Corresponding
results from the two methods shown are of the same mesh. Almost all the cases in Tables 2-6 are con-
vergent, except those with SS3 conditions and few others (with maximum 2.7% difference between the
present mesh and the previous one). It should be noted that, although the examples analyzed here are the
same as those in Liu and Chen (1995), the vibration frequencies obtained therein by the displacement-type
formulation are different from those in the present results by the same formulation. This is due to different
meshes used. Much refined meshes are employed in the present analysis.

From the results in Tables 2-6, we may find that vibration frequencies of both the mixed formulation
and the conventional displacement approach (with a “4”’) are close to each other, except for those cases
with SS3 conditions and the one with a/h = 5, b/a = 0.1, simply supported—simply supported in Table 5. In
the latter case, only frequencies with the SS1-SS1 and SS2-SS2 boundary conditions and by mixed for-
mulation satisfy the 0.5% convergence criterion. We may also find that (1) the nondimensional frequencies
obtained by the present mixed formulation are always smaller than those by the conventional displacement-
type axisymmetric finite element, (this may attribute to the “softening” effect of the complementary strain
energy to the strain energy when Reissner’s principle is incorporated.) and (2) the difference of vibration
frequencies between these two methods becomes smaller in general as the thickness decreases. Numbers in
parentheses in these five tables show the percentage differences of the fundamental frequencies from these
two methods for each case, and a “x”” behind a number represents that there exists a nonflexural mode just
before the present one and its frequency is not shown.

To further justify the accuracy of the present mixed formulation, two additional examples of thick
annular plates are analyzed. One has a/h = 2.5, b/a = 0.5, and the other a/h =1, b/a = 0.5. Both are of
free boundary. The nondimensionalization is @ = wa+/(p/G). In Table 7, the present results are compared
with those by a 3-D Ritz method (So and Leissa, 1998), a 3-D series method (Hutchinson and El-Azhari,
1986), a 2-D Mindlin theory (Irie et al., 1980), and the 3-D displacement-type axisymmetric finite element
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Table 2
Nondimensional frequencies for clamped circular plates
alh 4 5 10 20 50
Mode 1 8.923 9.338 9.990 10.180 10.218 Present
8.930 (0.08%) 9.340 (0.02%) 9.997 (0.07%) 10.184 (0.04%) 10.219 (0.01%) +
Mode 2 27.810 30.709 36.753 39.027 39.678 Present
27.834 30.721 36.791 39.048 39.685 +
Mode 3 50.748 57.930 76.474 85.488 88.553 Present
50.807 57.966 76.581 85.551 88.570 +
Mode 4 75.487% 87.900x 125.050 147.507 156.397 Present
75.646% 87.998x 125.273 147.653 156.433 +

(Liu and Lee, 2000). It should be noted that a finite-term Ritz approach only satisfies the free stress
boundary conditions approximately. Also, in Hutchinson and El-Ahari’s series solution, part of the stress
boundary conditions are satisfied only approximately. Therefore, all the above four methods do not fulfill
the stress boundary conditions exactly, although they are considered to be among the most accurate known
to date. (In Table 7, the frequencies given by So and Leissa (1998) are exact to the four or five significant
figures, as discussed in their paper.) From Table 7, we may observe that the results of the present method,
the displacement-type axisymmetric finite element, and the 3DR method agree very well with one another,
with the present solutions lie between the other two.

4. Conclusion

In the present investigation, a mixed axisymmetric finite element formulation is proposed which has
stresses, as well as displacements, as dependable variables. Therefore, in the analysis of axisymmetric vi-
bration of circular and annular plates, the satisfying of the stress boundary conditions is accomplished just
as easily and exactly as the displacement boundary conditions. With such a formulation, one of the most

Table 3
Nondimensional frequencies for simply supported circular plates
alh 4 5 10 20 50
Mode 1 4.694 4.780 4.896 4.925 4.934 SS1, Present
4.694 4.780 4.896 4.925 4.934 SS2, Present
6.367 6.729 7.232 7.451 7.539 SS3, Present
4.589 4.722 4.888 4919 4.934 SS4, Present
4.699 (0.11%) 4.784 (0.08%) 4.897 (0.02%) 4.926 (0.02%) 4.934 (0.00%) SS1, +
4.699 (0.11%) 4.784 (0.08%) 4.897 (0.02%) 4.926 (0.02%) 4.934 (0.00%) SS2, +
6.509 (2.18%) 6.840 (1.62%) 7.317 (1.16%) 7.473 (0.29%) 7.559 (0.26%) SS3, +
4.598 (0.20%) 4.729 (0.15%) 4.889 (0.02%) 4.924 (0.10%) 4.933 (—0.02%)  SS4, +
Mode 2 23.092 24.985 28.276 29.345 29.659 SS1, Present
23.092 24.985 28.276 29.345 29.659 SS2, Present
22.285 25.351 30.516 32.026 32.692 SS3, Present
21.138 23.823 28.139 29.192 29.657 SS4, Present
23.203 25.074 28.322 29.348 29.659 SS1, +
23.203 25.074 28.322 29.348 29.659 SS2, +
22.617 25.669 30.669 32.208 32.726 SS3, +

21.348 24.100 28.176 29.328 29.657 SS4, +
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Table 4
Nondimensional frequencies for clamped—-clamped annular plates
alh
5 10 20 50
bja=0.1
Mode 1 20.256 24919 26.689 27.243 Present
20.278 (0.11%) 24.930 (0.04%) 26.702 (0.05%) 27.251 (0.03%) +
Mode 2 46.027 63.062 71.756 74.915 Present
46.078 63.094 71.788 74.940 +
bja=10.3
Mode 1 39.980 43.925 45.238 Present
40.000 (0.05%) 43.956 (0.07%) 45.255 (0.04%) +
Mode 2 97.383 116.350 124.126 Present
97.441 116.459 124.179 +
b/a =105
Mode 1 71.736 83.853 88.684 Present
71.788 (0.07%) 83.880 (0.03%) 88.733 (0.06%) +
Mode 2 163.892 214.592 241.275 Present
164.041 214.671 241.431 +

severe disadvantages of the conventional displacement-type finite element formulation has been eliminated.
From the results and comparisons shown, it may be found that vibration frequencies obtained by the
present method are smaller than those by the conventional 3-D axisymmetric finite element method.
However, the differences are so little that it may be concluded that the conventional formulation, though
not satisfying the stress boundary conditions, can still obtain sufficiently accurate vibration frequencies of
circular and annular plates, and should be considered first when performing an analysis, due to its sim-
plicity and economy in computing.

Appendix A
_ | [kn] ko] _ | [bu] [b2] [B13] [Bud]
Il = {[km] [kzz]] bl = {[bzl] [baa] B3] b
] [ PARZSRZSRTS
[m]: {[”121] [mzz]} [d] - [da] [d] [ds] [dad]
[dn] [du] [da3]  [dad]

where
(m1); = (mx),; = 2/9MMdv

(mi2),; = (ma),; =0

(ki) = /(Cll]vi,r]vj,r + ci3NiN; /¥ + ci3NiN; . /¥ + ¢33NiN; /17 + cgsN;.N;.) dv
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Table 5
Nondimensional frequencies simply supported—simply supported annular plates
alh
5 10 20 50
bja =01
Mode 1 11.979 13.786 14.317 14.458 SS1-SS1, Present
11.979 13.786 14.317 14.458 SS2-SS2, Present
13.776 17.752 19.471 20.095 SS3-SS3, Present
10.785 13.572 14.316 14.461 SS4-SS4, Present
12.092 (0.93%) 13.808 (0.16%) 14.320 (0.02%) 14.458 (0.00%) SS1-SS1, +
12.092 (0.93%) 13.808 (0.16%) 14.320 (0.02%) 14.458 (0.00%) SS2-S82, +
14.388 (4.25%) 18.126 (2.06%) 19.727 (1.30%) 20.213 (0.58%) SS3-SS3, +
10.938 (1.40%) 13.609 (0.27%) 14.323 (0.05%) 14.462 (0.01%) SS4-S84, +
Mode 2 36.396 46.520 50.410 51.556 SS1-SS1, Present
36.396x 46.520 50.410 51.556 SS2-SS2, Present
31.258 48.276 55.854 58.196 SS3-SS3, Present
34.194x 44.738 50.264 51.561 SS4-SS4, Present
36.934 46.660 50.435 51.560 SS1-SS1, +
36.934x 46.660 50.435 51.560 SS2-SS2, +
31.878 48.851 56.223 58.355 SS3-SS3, +
34.200x 44.970 50.322 51.562 SS4-SS4, +
b/a =03
Mode 1 20.142 20.854 21.043 SS1-SS1, Present
20.142 20.854 21.043 SS2-SS2, Present
27.444 30.629 31.881 SS3-SS3, Present
19.787 20.826 21.043 SS4-SS4, Present
20.168 (0.13%) 20.858 (0.02%) 21.044 (0.00%) SS1-SS1, +
20.168 (0.13%) 20.858 (0.02%) 21.044 (0.00%) SS2-SS2, +
28.124 (2.42%) 31.107 (1.54%) 32.063 (0.57%) SS3-SS3, +
19.831 (0.22%) 20.836 (0.05%) 21.044 (0.00%) SS4-Ss4, +
Mode 2 71.096 78.841 81.259 SS1-SS1, Present
71.096x 78.841 81.259 SS2-SS2, Present
64.396 81.523 86.780 SS3-SS3, Present
67.258+ 78.384 81.240 SS4-SS4, Present
71.353 78.893 81.261 SS1-SS1, +
71.353x% 78.893 81.261 SS2-SS2, +
64.714 81.710 86.845 SS3-SS3, +
67.693x 78.508 81.238 SS4-SS4, +
bla=10.5
Mode 1 37.045 39.307 39.925 SS1-SS1, Present
37.045 39.307 39.925 SS2-SS2, Present
49.146 57.874 61.171 SS3-SS3, Present
35.574 39.149 39.916 SS4-SS4, Present
37.144 (0.27%) 39.324 (0.04%) 39.927 (0.01%) SS1-SS1, +
37.144 (0.27%) 39.324 (0.04%) 39.927 (0.01%) SS2-SS2, +
50.756 (3.17%) 59.047 (1.99%) 61.716 (0.88%) SS3-SS3, +
35.735 (0.45%) 39.190 (0.10%) 39.919 (0.01%) SS4-SS4, +
Mode 2 124.626 148.448 156.878 SS1-SS1, Present

124.626%
85.794
110.419%
125.585
125.585x%
87.402
111.909%

148.448x
138.478
146.264%
148.677
148.677*
138.983
146.806%

156.878
159.302
156.715
156.899
156.899
159.358
156.761

SS2-SS2, Present
SS3-SS3, Present
SS4-SS4, Present
SS1-SS1, +
SS2-SS2, +
SS3-SS3, +
SS4-SS4, +
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(le)jj = /(ClzNi,rN + ¢3NiN; . /1 + ¢33 NiN; /r + c6N;-N;,) dv
(kIZ)ij = (kIZ)ﬁ

(kZZ);j = /(CZZNi,zNj,z + C66Ni,rN,-,,.) dv

i, j =1~ n, and c,, are the stiffness coefficients.

b11 /N,,N dv
(b, = [ i)
(b1a),; /N,ZN dv
(b22), /N,ZN dv
(b2a),; /N,,N do
(dll)tj:/_sllMdeU
(dlz)ij:/_SIZM]\/jdv

(d13),;,~:/*313]\’f]\/jdv
(dZI)iJ‘ = (dlz)ﬁ

(dn);; = / —snN;N;dv
(d23),;,-:/*523]\7f]\/jdv

(d31),; = (d13);
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Table 6
Nondimensional frequencies for free-simply supported annular plates
alh
5 10 20 50
bja =01
Mode 1 4.710 4.817 4.844 4.852 Free-SS1, Present
4.710 4.817 4.844 4.852 Free-SS2, Present
6.716 7.151 7.339 7.475 Free-SS3, Present
4.663 4.809 4.843 4.852 Free-SS4, Present
4.716 (0.13%) 4.818 (0.02%) 4.844 (0.00%) 4.852 (0.00%) Free-SS1, +
4.716 (0.13%) 4.818 (0.02%) 4.844 (0.00%) 4.852 (0.00%) Free-SS2, +
6.856 (2.04%) 7.235 (1.16%) 7.386 (0.64%) 7.469 (—0.08%) Free-SS3, +
4.672 (0.19%) 4.811 (0.04%) 4.843 (0.00%) 4.852 (0.00%) Free-SS4, +
Mode 2 25.012 28.096 29.080 29.381 Free-SS1, Present
25.012 28.096 29.080 29.381 Free-SS2, Present
25.451 30.259 31.818 32.395 Free-SS3, Present
24.051 27.928 29.057 29.380 Free-SS4, Present
25.118 28.117 29.087 29.381 Free-SS1, +
25.118 28.117 29.087 29.381 Free-SS2, +
25.776 30.412 31.895 32.393 Free-SS3, +
24.263 27.971 29.064 29.379 Free-SS4, +
b/a =03
Mode 1 4.632 4.656 4.663 Free-SS1, Present
4.632 4.656 4.663 Free-SS2, Present
7.279 7.470 7.594 Free-SS3, Present
4.624 4.655 4.663 Free-SS4, Present
4.632 (0.00%) 4.656 (0.00%) 4.663 (0.00%) Free-SS1, +
4.632 (0.00%) 4.656 (0.00%) 4.663 (0.00%) Free-SS2, +
7.363 (1.14%) 7.516 (0.61%) 7.600 (0.08%) Free-SS3, +
4.625 (0.02%) 4.655 (0.00%) 4.663 (0.00%) Free-SS4, +
Mode 2 34977 36.489 36.953 Free-SS1, Present
34.977 36.489 36.953 Free-SS2, Present
36.706 39.362 40.235 Free-SS3, Present
34.639 36.437 36.950 Free-SS4, Present
35.009 36.494 36.953 Free-SS1, +
35.009 36.494 36.953 Free-SS2, +
36.854 39.437 40.256 Free-SS3, +
34.715 36.448 36.949 Free-SS4, +
b/a =05
Mode 1 5.034 5.066 5.075 Free-SS1, Present
5.034 5.066 5.075 Free-SS2, Present
8.663 8.912 9.043 Free-SS3, Present
5.025 5.064 5.075 Free-SS4, Present
5.035 (0.02%) 5.066 (0.00%) 5.075 (0.00%) Free-SS1, +
5.035 (0.02%) 5.066 (0.00%) 5.075 (0.00%) Free-SS2, +
8.751 (1.01%) 8.961 (0.55%) 9.063 (0.22%) Free-SS3, +
5.026 (0.02%) 5.064 (0.00%) 5.075 (0.00%) Free-SS4, +
Mode 2 59.618 64.089 65.553 Free-SS1, Present

59.618x
55.894
58.238x
59.751
59.751x
56.147
58.557x

64.089
65.761
63.866
64.111
64.111
65.831
63.918

65.553
68.762
65.535
65.555
65.555
68.787
65.539

Free-SS2, Present
Free-SS3, Present
Free-SS4, Present
Free-SS1, +
Free-SS2, +
Free-SS3, +
Free-SS4, +
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Table 7

7569

Comparison of nondimensional axisymmetric, flexural vibration frequencies of the annular thick plates among the present, 3-D dis-
placement type, axisymmetric finite element (3DD), 3-D Ritz (3DR), 3-D Hutchinson’s series method (3DH) and 2-D Mindlin theory

(2DM), with a/h = 2.5, b/a = 0.5 (mesh 10 x 4) and a/h =1, b/a = 0.5 (mesh 8 x 8)

a/h b/a Method Mode
1 2 3 4

2.5 0.5 Present 1.388 8.323 9.131 14.150
3DD 1.388 8.324 9.132 14.160
3DR 1.388 8.321 9.127 14.133
3DH 1.398 8.327 9.128 10.398
2DM 1.388 8.324 9.370 10.593

1 0.5 Present 1.984 5.774 8.265 9.086
3DD 1.984 5.774 8.268 9.087
3DR 1.984 5.772 8.258 9.084
3DH 1.985 5.774 7.503 8.259
2DM 1.985 6.720 7.547 10.010

(dx),; = (d);;

(d33),-j=/—533]\’ideU

(d44),-j:/—566]\’ideU

All other matrices of (by,);; and (d,,),; are zero.
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